by Gabriele Wagner | Dec 12, 2024
Angew Chem Int Ed Engl. 2024 Dec 12:e202422075. doi: 10.1002/anie.202422075. Online ahead of print.
ABSTRACT
Versatile DNA and polypeptide-based structures have been designed based on complementary modules. However, polypeptides can also form higher oligomeric states. We investigated the introduction of tetrameric modules as a substitute for coiled-coil dimerization units used in previous modular nanostructures. Tetramerizing helical bundles can run in parallel or antiparallel orientation, expanding the number of topological solutions for modular nanostructures. Furthermore, this strategy facilitates the construction of nanostructures from two identical polypeptide chains. Importantly, tetrameric modules substantially stabilized protein nanostructures against air-water interface denaturation, enabling the determination of the first cryo-electron microscopy three-dimensional structure of a coiled-coil-based nanostructure, confirming the designed agreement of the modules forming a tetrahedral cage.
PMID:39666653 | DOI:10.1002/anie.202422075
by Gabriele Wagner | Oct 11, 2024
ACS Nano. 2024 Oct 22;18(42):28748-28763. doi: 10.1021/acsnano.4c07701. Epub 2024 Oct 11.
ABSTRACT
Modular protein engineering is a powerful approach for fabricating high-molecular-weight assemblies and biomaterials with nanoscale precision. Herein, we address the challenge of designing an extended nanoscale filamentous architecture inspired by the central rod domain of human dystrophin, which protects sarcolemma during muscle contraction and consists of spectrin repeats composed of three-helical bundles. A module of three tandem spectrin repeats was used as a rigid building block self-assembling via coiled-coil (CC) dimer-forming peptides. CC peptides were precisely integrated to maintain the spectrin α-helix continuity in an appropriate frame to form extended nanorods. An orthogonal set of customizable CC heterodimers was harnessed for modular rigid domain association, which could be additionally regulated by metal ions and chelators. We achieved a robust assembly of rigid rods several micrometers in length, determined by atomic force microscopy and negative stain transmission electron microscopy. Furthermore, these rigid rods can serve as a scaffold for the decoration of diverse proteins or biologically active peptides along their length with adjustable spacing up to tens of nanometers, as confirmed by the DNA-PAINT super-resolution microscopy. This demonstrates the potential of modular bottom-up protein engineering and tunable CCs for the fabrication of functionalized protein biomaterials.
PMID:39392430 | PMC:PMC11503911 | DOI:10.1021/acsnano.4c07701
by Gabriele Wagner | Sep 9, 2024
NPJ Vaccines. 2024 Sep 9;9(1):164. doi: 10.1038/s41541-024-00950-9.
ABSTRACT
Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed. T2_32 elicited superior neutralising responses against VOCs compared to the Wuhan-1 spike antigen in DNA prime-boost immunisation regime in guinea pigs. Heterologous boosting with the attenuated poxvirus – Modified vaccinia Ankara expressing T2_32 induced broader neutralising immune responses in all primed animals. T2_32, T2_35 and T2_36 elicited broader neutralising capacity compared to the Omicron BA.1 spike antigen administered by mRNA immunisation in mice. These findings demonstrate the utility of structure-informed computationally derived modifications of spike-based antigens for inducing broad immune responses covering more than 2 years of evolved SARS-CoV-2 variants.
PMID:39251608 | PMC:PMC11384739 | DOI:10.1038/s41541-024-00950-9
by Gabriele Wagner | Jul 6, 2024
Cell Chem Biol. 2024 Aug 15;31(8):1460-1472. doi: 10.1016/j.chembiol.2024.06.001. Epub 2024 Jul 5.
ABSTRACT
Synthetic biology aims to engineer complex biological systems using modular elements, with coiled-coil (CC) dimer-forming modules are emerging as highly useful building blocks in the regulation of protein assemblies and biological processes. Those small modules facilitate highly specific and orthogonal protein-protein interactions, offering versatility for the regulation of diverse biological functions. Additionally, their design rules enable precise control and tunability over these interactions, which are crucial for specific applications. Recent advancements showcase their potential for use in innovative therapeutic interventions and biomedical applications. In this review, we discuss the potential of CCs, exploring their diverse applications in mammalian cells, such as synthetic biological circuit design, transcriptional and allosteric regulation, cellular assemblies, chimeric antigen receptor (CAR) T cell regulation, and genome editing and their role in advancing the understanding and regulation of cellular processes.
PMID:38971158 | PMC:PMC11335187 | DOI:10.1016/j.chembiol.2024.06.001
by Gabriele Wagner | May 25, 2024
J Control Release. 2024 Jul;371:179-192. doi: 10.1016/j.jconrel.2024.05.041. Epub 2024 May 29.
ABSTRACT
The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.
PMID:38795814 | DOI:10.1016/j.jconrel.2024.05.041